Mister Exam

Other calculators


sqrt(8-3*x^2)

Integral of sqrt(8-3*x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     __________   
 |    /        2    
 |  \/  8 - 3*x   dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sqrt{- 3 x^{2} + 8}\, dx$$
Integral(sqrt(8 - 3*x^2), (x, 0, 1))
Detail solution

    SqrtQuadraticRule(a=8, b=0, c=-3, context=sqrt(8 - 3*x**2), symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                     /    ___\
 |                             __________       ___     |x*\/ 6 |
 |    __________              /        2    4*\/ 3 *asin|-------|
 |   /        2           x*\/  8 - 3*x                 \   4   /
 | \/  8 - 3*x   dx = C + --------------- + ---------------------
 |                               2                    3          
/                                                                
$${{4\,\arcsin \left({{3\,x}\over{2\,\sqrt{6}}}\right)}\over{\sqrt{3} }}+{{x\,\sqrt{8-3\,x^2}}\over{2}}$$
The graph
The answer [src]
                    /  ___\
            ___     |\/ 6 |
  ___   4*\/ 3 *asin|-----|
\/ 5                \  4  /
----- + -------------------
  2              3         
$${{8\,\sqrt{3}\,\arcsin \left({{\sqrt{6}}\over{4}}\right)+3\,\sqrt{5 }}\over{6}}$$
=
=
                    /  ___\
            ___     |\/ 6 |
  ___   4*\/ 3 *asin|-----|
\/ 5                \  4  /
----- + -------------------
  2              3         
$$\frac{\sqrt{5}}{2} + \frac{4 \sqrt{3} \operatorname{asin}{\left(\frac{\sqrt{6}}{4} \right)}}{3}$$
Numerical answer [src]
2.64006332633375
2.64006332633375
The graph
Integral of sqrt(8-3*x^2) dx

    Use the examples entering the upper and lower limits of integration.