Mister Exam

Other calculators

Integral of (sqrt(arctgx+3))/1+x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                          
  /                          
 |                           
 |  /  _____________     \   
 |  |\/ acot(x) + 3     2|   
 |  |--------------- + x | dx
 |  \       1            /   
 |                           
/                            
0                            
$$\int\limits_{0}^{1} \left(x^{2} + \frac{\sqrt{\operatorname{acot}{\left(x \right)} + 3}}{1}\right)\, dx$$
Integral(sqrt(acot(x) + 3)/1 + x^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                          
 |                                        /                  
 | /  _____________     \           3    |                   
 | |\/ acot(x) + 3     2|          x     |   _____________   
 | |--------------- + x | dx = C + -- +  | \/ acot(x) + 3  dx
 | \       1            /          3     |                   
 |                                      /                    
/                                                            
$$\int \left(x^{2} + \frac{\sqrt{\operatorname{acot}{\left(x \right)} + 3}}{1}\right)\, dx = C + \frac{x^{3}}{3} + \int \sqrt{\operatorname{acot}{\left(x \right)} + 3}\, dx$$
The answer [src]
  1                          
  /                          
 |                           
 |  / 2     _____________\   
 |  \x  + \/ 3 + acot(x) / dx
 |                           
/                            
0                            
$$\int\limits_{0}^{1} \left(x^{2} + \sqrt{\operatorname{acot}{\left(x \right)} + 3}\right)\, dx$$
=
=
  1                          
  /                          
 |                           
 |  / 2     _____________\   
 |  \x  + \/ 3 + acot(x) / dx
 |                           
/                            
0                            
$$\int\limits_{0}^{1} \left(x^{2} + \sqrt{\operatorname{acot}{\left(x \right)} + 3}\right)\, dx$$
Integral(x^2 + sqrt(3 + acot(x)), (x, 0, 1))
Numerical answer [src]
2.36527805077317
2.36527805077317

    Use the examples entering the upper and lower limits of integration.