Mister Exam

Integral of sqrt4x+5dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  /  _____    \   
 |  \\/ 4*x  + 5/ dx
 |                  
/                   
0                   
01(4x+5)dx\int\limits_{0}^{1} \left(\sqrt{4 x} + 5\right)\, dx
Integral(sqrt(4*x) + 5, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Don't know the steps in finding this integral.

      But the integral is

      4x323\frac{4 x^{\frac{3}{2}}}{3}

    1. The integral of a constant is the constant times the variable of integration:

      5dx=5x\int 5\, dx = 5 x

    The result is: 4x323+5x\frac{4 x^{\frac{3}{2}}}{3} + 5 x

  2. Add the constant of integration:

    4x323+5x+constant\frac{4 x^{\frac{3}{2}}}{3} + 5 x+ \mathrm{constant}


The answer is:

4x323+5x+constant\frac{4 x^{\frac{3}{2}}}{3} + 5 x+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                 3/2
 | /  _____    \                4*x   
 | \\/ 4*x  + 5/ dx = C + 5*x + ------
 |                                3   
/                                     
(4x+5)dx=C+4x323+5x\int \left(\sqrt{4 x} + 5\right)\, dx = C + \frac{4 x^{\frac{3}{2}}}{3} + 5 x
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
19/3
193\frac{19}{3}
=
=
19/3
193\frac{19}{3}
19/3
Numerical answer [src]
6.33333333333333
6.33333333333333

    Use the examples entering the upper and lower limits of integration.