Mister Exam

Other calculators

Integral of (sqrt(3sinx+1))*cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                           
 --                           
 2                            
  /                           
 |                            
 |    ______________          
 |  \/ 3*sin(x) + 1 *cos(x) dx
 |                            
/                             
0                             
$$\int\limits_{0}^{\frac{\pi}{2}} \sqrt{3 \sin{\left(x \right)} + 1} \cos{\left(x \right)}\, dx$$
Integral(sqrt(3*sin(x) + 1)*cos(x), (x, 0, pi/2))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                    
 |                                                  3/2
 |   ______________                 2*(3*sin(x) + 1)   
 | \/ 3*sin(x) + 1 *cos(x) dx = C + -------------------
 |                                           9         
/                                                      
$$\int \sqrt{3 \sin{\left(x \right)} + 1} \cos{\left(x \right)}\, dx = C + \frac{2 \left(3 \sin{\left(x \right)} + 1\right)^{\frac{3}{2}}}{9}$$
The graph
The answer [src]
14/9
$$\frac{14}{9}$$
=
=
14/9
$$\frac{14}{9}$$
14/9
Numerical answer [src]
1.55555555555556
1.55555555555556

    Use the examples entering the upper and lower limits of integration.