Mister Exam

Other calculators


16-8x^2+x^4

Integral of 16-8x^2+x^4 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |  /        2    4\   
 |  \16 - 8*x  + x / dx
 |                     
/                      
-1                     
$$\int\limits_{-1}^{1} \left(x^{4} + \left(16 - 8 x^{2}\right)\right)\, dx$$
Integral(16 - 8*x^2 + x^4, (x, -1, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                                     3    5
 | /        2    4\                 8*x    x 
 | \16 - 8*x  + x / dx = C + 16*x - ---- + --
 |                                   3     5 
/                                            
$$\int \left(x^{4} + \left(16 - 8 x^{2}\right)\right)\, dx = C + \frac{x^{5}}{5} - \frac{8 x^{3}}{3} + 16 x$$
The graph
The answer [src]
406
---
 15
$$\frac{406}{15}$$
=
=
406
---
 15
$$\frac{406}{15}$$
406/15
Numerical answer [src]
27.0666666666667
27.0666666666667
The graph
Integral of 16-8x^2+x^4 dx

    Use the examples entering the upper and lower limits of integration.