1 / | | sin(x)*(4*cos(x) - 6) dx | / 0
Integral(sin(x)*(4*cos(x) - 1*6), (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The result is:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
The result is:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 2 | sin(x)*(4*cos(x) - 6) dx = C - 2*cos (x) + 6*cos(x) | /
2 -4 - 2*cos (1) + 6*cos(1)
=
2 -4 - 2*cos (1) + 6*cos(1)
Use the examples entering the upper and lower limits of integration.