Mister Exam

Other calculators

Integral of (sinxdx)/(2+sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi              
 --              
 2               
  /              
 |               
 |    sin(x)     
 |  ---------- dx
 |  2 + sin(x)   
 |               
/                
0                
$$\int\limits_{0}^{\frac{\pi}{2}} \frac{\sin{\left(x \right)}}{\sin{\left(x \right)} + 2}\, dx$$
Integral(sin(x)/(2 + sin(x)), (x, 0, pi/2))
The answer (Indefinite) [src]
                                   /        /x   pi\       /            ___    /x\\\
                                   |        |- - --|       |  ___   2*\/ 3 *tan|-|||
  /                            ___ |        |2   2 |       |\/ 3               \2/||
 |                         4*\/ 3 *|pi*floor|------| + atan|----- + --------------||
 |   sin(x)                        \        \  pi  /       \  3           3       //
 | ---------- dx = C + x - ---------------------------------------------------------
 | 2 + sin(x)                                          3                            
 |                                                                                  
/                                                                                   
$$\int \frac{\sin{\left(x \right)}}{\sin{\left(x \right)} + 2}\, dx = C + x - \frac{4 \sqrt{3} \left(\operatorname{atan}{\left(\frac{2 \sqrt{3} \tan{\left(\frac{x}{2} \right)}}{3} + \frac{\sqrt{3}}{3} \right)} + \pi \left\lfloor{\frac{\frac{x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor\right)}{3}$$
The graph
The answer [src]
            ___
pi   2*pi*\/ 3 
-- - ----------
2        9     
$$- \frac{2 \sqrt{3} \pi}{9} + \frac{\pi}{2}$$
=
=
            ___
pi   2*pi*\/ 3 
-- - ----------
2        9     
$$- \frac{2 \sqrt{3} \pi}{9} + \frac{\pi}{2}$$
pi/2 - 2*pi*sqrt(3)/9
Numerical answer [src]
0.361596750638751
0.361596750638751

    Use the examples entering the upper and lower limits of integration.