Mister Exam

Other calculators

Integral of sinxdx/2+cos^2(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  /sin(x)      2   \   
 |  |------ + cos (x)| dx
 |  \  2             /   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \left(\frac{\sin{\left(x \right)}}{2} + \cos^{2}{\left(x \right)}\right)\, dx$$
Integral(sin(x)/2 + cos(x)^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                 
 |                                                  
 | /sin(x)      2   \          x   cos(x)   sin(2*x)
 | |------ + cos (x)| dx = C + - - ------ + --------
 | \  2             /          2     2         4    
 |                                                  
/                                                   
$$\int \left(\frac{\sin{\left(x \right)}}{2} + \cos^{2}{\left(x \right)}\right)\, dx = C + \frac{x}{2} + \frac{\sin{\left(2 x \right)}}{4} - \frac{\cos{\left(x \right)}}{2}$$
The graph
The answer [src]
    cos(1)   cos(1)*sin(1)
1 - ------ + -------------
      2            2      
$$- \frac{\cos{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + 1$$
=
=
    cos(1)   cos(1)*sin(1)
1 - ------ + -------------
      2            2      
$$- \frac{\cos{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + 1$$
1 - cos(1)/2 + cos(1)*sin(1)/2
Numerical answer [src]
0.957173203772351
0.957173203772351

    Use the examples entering the upper and lower limits of integration.