Mister Exam

Other calculators


sinxdx/(2+3cosx)

Integral of sinxdx/(2+3cosx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |                1         
 |  sin(x)*1*------------ dx
 |           2 + 3*cos(x)   
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \sin{\left(x \right)} 1 \cdot \frac{1}{3 \cos{\left(x \right)} + 2}\, dx$$
Integral(sin(x)*1/(2 + 3*cos(x)), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is .

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                
 |                                                 
 |               1                log(2 + 3*cos(x))
 | sin(x)*1*------------ dx = C - -----------------
 |          2 + 3*cos(x)                  3        
 |                                                 
/                                                  
$$\int \sin{\left(x \right)} 1 \cdot \frac{1}{3 \cos{\left(x \right)} + 2}\, dx = C - \frac{\log{\left(3 \cos{\left(x \right)} + 2 \right)}}{3}$$
The graph
The answer [src]
  log(2 + 3*cos(1))   log(5)
- ----------------- + ------
          3             3   
$$- \frac{\log{\left(3 \cos{\left(1 \right)} + 2 \right)}}{3} + \frac{\log{\left(5 \right)}}{3}$$
=
=
  log(2 + 3*cos(1))   log(5)
- ----------------- + ------
          3             3   
$$- \frac{\log{\left(3 \cos{\left(1 \right)} + 2 \right)}}{3} + \frac{\log{\left(5 \right)}}{3}$$
Numerical answer [src]
0.107571129416258
0.107571129416258
The graph
Integral of sinxdx/(2+3cosx) dx

    Use the examples entering the upper and lower limits of integration.