Mister Exam

Other calculators

Integral of sin(x)^3+0.5sin(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  p                        
  -                        
  2                        
  /                        
 |                         
 |  /   3      sin(2*x)\   
 |  |sin (x) + --------| dx
 |  \             2    /   
 |                         
/                          
0                          
$$\int\limits_{0}^{\frac{p}{2}} \left(\sin^{3}{\left(x \right)} + \frac{\sin{\left(2 x \right)}}{2}\right)\, dx$$
Integral(sin(x)^3 + sin(2*x)/2, (x, 0, p/2))
Detail solution
  1. Integrate term-by-term:

    1. Rewrite the integrand:

    2. There are multiple ways to do this integral.

      Method #1

      1. Let .

        Then let and substitute :

        1. Integrate term-by-term:

          1. The integral of is when :

          1. The integral of a constant is the constant times the variable of integration:

          The result is:

        Now substitute back in:

      Method #2

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

        1. The integral of sine is negative cosine:

        The result is:

      Method #3

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

        1. The integral of sine is negative cosine:

        The result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. There are multiple ways to do this integral.

        Method #1

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        Method #2

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                         
 |                                                      3   
 | /   3      sin(2*x)\                   cos(2*x)   cos (x)
 | |sin (x) + --------| dx = C - cos(x) - -------- + -------
 | \             2    /                      4          3   
 |                                                          
/                                                           
$$\int \left(\sin^{3}{\left(x \right)} + \frac{\sin{\left(2 x \right)}}{2}\right)\, dx = C + \frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{4}$$
The answer [src]
                          3/p\
                       cos |-|
11      /p\   cos(p)       \2/
-- - cos|-| - ------ + -------
12      \2/     4         3   
$$\frac{\cos^{3}{\left(\frac{p}{2} \right)}}{3} - \cos{\left(\frac{p}{2} \right)} - \frac{\cos{\left(p \right)}}{4} + \frac{11}{12}$$
=
=
                          3/p\
                       cos |-|
11      /p\   cos(p)       \2/
-- - cos|-| - ------ + -------
12      \2/     4         3   
$$\frac{\cos^{3}{\left(\frac{p}{2} \right)}}{3} - \cos{\left(\frac{p}{2} \right)} - \frac{\cos{\left(p \right)}}{4} + \frac{11}{12}$$
11/12 - cos(p/2) - cos(p)/4 + cos(p/2)^3/3

    Use the examples entering the upper and lower limits of integration.