Mister Exam

Other calculators

Integral of (sinx+cosx)/(3+sin2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  sin(x) + cos(x)   
 |  --------------- dx
 |    3 + sin(2*x)    
 |                    
/                     
0                     
01sin(x)+cos(x)sin(2x)+3dx\int\limits_{0}^{1} \frac{\sin{\left(x \right)} + \cos{\left(x \right)}}{\sin{\left(2 x \right)} + 3}\, dx
Integral((sin(x) + cos(x))/(3 + sin(2*x)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      sin(x)+cos(x)sin(2x)+3=sin(x)sin(2x)+3+cos(x)sin(2x)+3\frac{\sin{\left(x \right)} + \cos{\left(x \right)}}{\sin{\left(2 x \right)} + 3} = \frac{\sin{\left(x \right)}}{\sin{\left(2 x \right)} + 3} + \frac{\cos{\left(x \right)}}{\sin{\left(2 x \right)} + 3}

    2. Integrate term-by-term:

      1. Don't know the steps in finding this integral.

        But the integral is

        sin(x)sin(2x)+3dx\int \frac{\sin{\left(x \right)}}{\sin{\left(2 x \right)} + 3}\, dx

      1. Don't know the steps in finding this integral.

        But the integral is

        cos(x)sin(2x)+3dx\int \frac{\cos{\left(x \right)}}{\sin{\left(2 x \right)} + 3}\, dx

      The result is: sin(x)sin(2x)+3dx+cos(x)sin(2x)+3dx\int \frac{\sin{\left(x \right)}}{\sin{\left(2 x \right)} + 3}\, dx + \int \frac{\cos{\left(x \right)}}{\sin{\left(2 x \right)} + 3}\, dx

    Method #2

    1. Rewrite the integrand:

      sin(x)+cos(x)sin(2x)+3=sin(x)2sin(x)cos(x)+3+cos(x)2sin(x)cos(x)+3\frac{\sin{\left(x \right)} + \cos{\left(x \right)}}{\sin{\left(2 x \right)} + 3} = \frac{\sin{\left(x \right)}}{2 \sin{\left(x \right)} \cos{\left(x \right)} + 3} + \frac{\cos{\left(x \right)}}{2 \sin{\left(x \right)} \cos{\left(x \right)} + 3}

    2. Integrate term-by-term:

      1. Don't know the steps in finding this integral.

        But the integral is

        2(atan(2tan(x2)222)+πx2π2π)42(atan(32tan(x2)2+22)+πx2π2π)4log(tan2(x2)2tan(x2)+3)8+log(9tan2(x2)+6tan(x2)+3)8\frac{\sqrt{2} \left(\operatorname{atan}{\left(\frac{\sqrt{2} \tan{\left(\frac{x}{2} \right)}}{2} - \frac{\sqrt{2}}{2} \right)} + \pi \left\lfloor{\frac{\frac{x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor\right)}{4} - \frac{\sqrt{2} \left(\operatorname{atan}{\left(\frac{3 \sqrt{2} \tan{\left(\frac{x}{2} \right)}}{2} + \frac{\sqrt{2}}{2} \right)} + \pi \left\lfloor{\frac{\frac{x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor\right)}{4} - \frac{\log{\left(\tan^{2}{\left(\frac{x}{2} \right)} - 2 \tan{\left(\frac{x}{2} \right)} + 3 \right)}}{8} + \frac{\log{\left(9 \tan^{2}{\left(\frac{x}{2} \right)} + 6 \tan{\left(\frac{x}{2} \right)} + 3 \right)}}{8}

      1. Don't know the steps in finding this integral.

        But the integral is

        2(atan(2tan(x2)222)+πx2π2π)4+2(atan(32tan(x2)2+22)+πx2π2π)4log(tan2(x2)2tan(x2)+3)8+log(9tan2(x2)+6tan(x2)+3)8- \frac{\sqrt{2} \left(\operatorname{atan}{\left(\frac{\sqrt{2} \tan{\left(\frac{x}{2} \right)}}{2} - \frac{\sqrt{2}}{2} \right)} + \pi \left\lfloor{\frac{\frac{x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor\right)}{4} + \frac{\sqrt{2} \left(\operatorname{atan}{\left(\frac{3 \sqrt{2} \tan{\left(\frac{x}{2} \right)}}{2} + \frac{\sqrt{2}}{2} \right)} + \pi \left\lfloor{\frac{\frac{x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor\right)}{4} - \frac{\log{\left(\tan^{2}{\left(\frac{x}{2} \right)} - 2 \tan{\left(\frac{x}{2} \right)} + 3 \right)}}{8} + \frac{\log{\left(9 \tan^{2}{\left(\frac{x}{2} \right)} + 6 \tan{\left(\frac{x}{2} \right)} + 3 \right)}}{8}

      The result is: log(tan2(x2)2tan(x2)+3)4+log(9tan2(x2)+6tan(x2)+3)4- \frac{\log{\left(\tan^{2}{\left(\frac{x}{2} \right)} - 2 \tan{\left(\frac{x}{2} \right)} + 3 \right)}}{4} + \frac{\log{\left(9 \tan^{2}{\left(\frac{x}{2} \right)} + 6 \tan{\left(\frac{x}{2} \right)} + 3 \right)}}{4}

  2. Add the constant of integration:

    sin(x)sin(2x)+3dx+cos(x)sin(2x)+3dx+constant\int \frac{\sin{\left(x \right)}}{\sin{\left(2 x \right)} + 3}\, dx + \int \frac{\cos{\left(x \right)}}{\sin{\left(2 x \right)} + 3}\, dx+ \mathrm{constant}


The answer is:

sin(x)sin(2x)+3dx+cos(x)sin(2x)+3dx+constant\int \frac{\sin{\left(x \right)}}{\sin{\left(2 x \right)} + 3}\, dx + \int \frac{\cos{\left(x \right)}}{\sin{\left(2 x \right)} + 3}\, dx+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           /                    /               
 |                           |                    |                
 | sin(x) + cos(x)           |    cos(x)          |    sin(x)      
 | --------------- dx = C +  | ------------ dx +  | ------------ dx
 |   3 + sin(2*x)            | 3 + sin(2*x)       | 3 + sin(2*x)   
 |                           |                    |                
/                           /                    /                 
sinx+cosxsin(2x)+3  dx\int {{{\sin x+\cos x}\over{\sin \left(2\,x\right)+3}}}{\;dx}
The answer [src]
  1                   
  /                   
 |                    
 |  cos(x) + sin(x)   
 |  --------------- dx
 |    3 + sin(2*x)    
 |                    
/                     
0                     
01sinx+cosxsin(2x)+3  dx\int_{0}^{1}{{{\sin x+\cos x}\over{\sin \left(2\,x\right)+3}}\;dx}
=
=
  1                   
  /                   
 |                    
 |  cos(x) + sin(x)   
 |  --------------- dx
 |    3 + sin(2*x)    
 |                    
/                     
0                     
01sin(x)+cos(x)sin(2x)+3dx\int\limits_{0}^{1} \frac{\sin{\left(x \right)} + \cos{\left(x \right)}}{\sin{\left(2 x \right)} + 3}\, dx
Numerical answer [src]
0.350522211844223
0.350522211844223

    Use the examples entering the upper and lower limits of integration.