Mister Exam

Other calculators


sinx+cos3x-2^x

Integral of sinx+cos3x-2^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                            
  /                            
 |                             
 |  /                     x\   
 |  \sin(x) + cos(3*x) - 2 / dx
 |                             
/                              
0                              
$$\int\limits_{0}^{1} \left(- 2^{x} + \left(\sin{\left(x \right)} + \cos{\left(3 x \right)}\right)\right)\, dx$$
Integral(sin(x) + cos(3*x) - 2^x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of an exponential function is itself divided by the natural logarithm of the base.

      So, the result is:

    1. Integrate term-by-term:

      1. The integral of sine is negative cosine:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      The result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                            
 |                                                          x  
 | /                     x\                   sin(3*x)     2   
 | \sin(x) + cos(3*x) - 2 / dx = C - cos(x) + -------- - ------
 |                                               3       log(2)
/                                                              
$$\int \left(- 2^{x} + \left(\sin{\left(x \right)} + \cos{\left(3 x \right)}\right)\right)\, dx = - \frac{2^{x}}{\log{\left(2 \right)}} + C + \frac{\sin{\left(3 x \right)}}{3} - \cos{\left(x \right)}$$
The graph
The answer [src]
      1               sin(3)
1 - ------ - cos(1) + ------
    log(2)              3   
$$- \frac{1}{\log{\left(2 \right)}} - \cos{\left(1 \right)} + \frac{\sin{\left(3 \right)}}{3} + 1$$
=
=
      1               sin(3)
1 - ------ - cos(1) + ------
    log(2)              3   
$$- \frac{1}{\log{\left(2 \right)}} - \cos{\left(1 \right)} + \frac{\sin{\left(3 \right)}}{3} + 1$$
1 - 1/log(2) - cos(1) + sin(3)/3
Numerical answer [src]
-0.935957344070481
-0.935957344070481
The graph
Integral of sinx+cos3x-2^x dx

    Use the examples entering the upper and lower limits of integration.