Mister Exam

Other calculators

Integral of (sin(x*exp(2y))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     /   2*y\   
 |  sin\x*e   / dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \sin{\left(x e^{2 y} \right)}\, dx$$
Integral(sin(x*exp(2*y)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                      
 |                                       
 |    /   2*y\             /   2*y\  -2*y
 | sin\x*e   / dx = C - cos\x*e   /*e    
 |                                       
/                                        
$$\int \sin{\left(x e^{2 y} \right)}\, dx = C - e^{- 2 y} \cos{\left(x e^{2 y} \right)}$$
The answer [src]
     / 2*y\  -2*y    -2*y
- cos\e   /*e     + e    
$$- e^{- 2 y} \cos{\left(e^{2 y} \right)} + e^{- 2 y}$$
=
=
     / 2*y\  -2*y    -2*y
- cos\e   /*e     + e    
$$- e^{- 2 y} \cos{\left(e^{2 y} \right)} + e^{- 2 y}$$
-cos(exp(2*y))*exp(-2*y) + exp(-2*y)

    Use the examples entering the upper and lower limits of integration.