Integral of sinx*cos^6x*dx dx
The solution
Detail solution
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫u6du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u6)du=−∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
So, the result is: −7u7
Now substitute u back in:
−7cos7(x)
-
Add the constant of integration:
−7cos7(x)+constant
The answer is:
−7cos7(x)+constant
The answer (Indefinite)
[src]
/
| 7
| 6 cos (x)
| sin(x)*cos (x)*1 dx = C - -------
| 7
/
∫sin(x)cos6(x)1dx=C−7cos7(x)
The graph
7
1 cos (1)
- - -------
7 7
71−7cos7(1)
=
7
1 cos (1)
- - -------
7 7
71−7cos7(1)
Use the examples entering the upper and lower limits of integration.