Mister Exam

Other calculators

Integral of sinx-xcosx/sin^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  /         x*cos(x)\   
 |  |sin(x) - --------| dx
 |  |            2    |   
 |  \         sin (x) /   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(- \frac{x \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \sin{\left(x \right)}\right)\, dx$$
Integral(sin(x) - x*cos(x)/sin(x)^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    1. The integral of sine is negative cosine:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                    /x\
 |                                                                x*tan|-|
 | /         x*cos(x)\                      /   /x\\      x            \2/
 | |sin(x) - --------| dx = C - cos(x) - log|tan|-|| + -------- + --------
 | |            2    |                      \   \2//        /x\      2    
 | \         sin (x) /                                 2*tan|-|           
 |                                                          \2/           
/                                                                         
$$\int \left(- \frac{x \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \sin{\left(x \right)}\right)\, dx = C + \frac{x \tan{\left(\frac{x}{2} \right)}}{2} + \frac{x}{2 \tan{\left(\frac{x}{2} \right)}} - \log{\left(\tan{\left(\frac{x}{2} \right)} \right)} - \cos{\left(x \right)}$$
The graph
The answer [src]
-oo
$$-\infty$$
=
=
-oo
$$-\infty$$
-oo
Numerical answer [src]
-43.5309180687013
-43.5309180687013

    Use the examples entering the upper and lower limits of integration.