Mister Exam

Integral of sinx-3cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  9                       
  /                       
 |                        
 |  (sin(x) - 3*cos(x)) dx
 |                        
/                         
0                         
$$\int\limits_{0}^{9} \left(\sin{\left(x \right)} - 3 \cos{\left(x \right)}\right)\, dx$$
Integral(sin(x) - 3*cos(x), (x, 0, 9))
Detail solution
  1. Integrate term-by-term:

    1. The integral of sine is negative cosine:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                              
 |                                               
 | (sin(x) - 3*cos(x)) dx = C - cos(x) - 3*sin(x)
 |                                               
/                                                
$$\int \left(\sin{\left(x \right)} - 3 \cos{\left(x \right)}\right)\, dx = C - 3 \sin{\left(x \right)} - \cos{\left(x \right)}$$
The graph
The answer [src]
1 - cos(9) - 3*sin(9)
$$- 3 \sin{\left(9 \right)} - \cos{\left(9 \right)} + 1$$
=
=
1 - cos(9) - 3*sin(9)
$$- 3 \sin{\left(9 \right)} - \cos{\left(9 \right)} + 1$$
1 - cos(9) - 3*sin(9)
Numerical answer [src]
0.674774806159407
0.674774806159407

    Use the examples entering the upper and lower limits of integration.