Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of tanx Integral of tanx
  • Integral of tanh(x) Integral of tanh(x)
  • Integral of x^2sen(x) Integral of x^2sen(x)
  • Integral of x/(16x^4+1) Integral of x/(16x^4+1)
  • Identical expressions

  • (sin(x))/(two x^2+sqrt(x))
  • ( sinus of (x)) divide by (2x squared plus square root of (x))
  • ( sinus of (x)) divide by (two x squared plus square root of (x))
  • (sin(x))/(2x^2+√(x))
  • (sin(x))/(2x2+sqrt(x))
  • sinx/2x2+sqrtx
  • (sin(x))/(2x²+sqrt(x))
  • (sin(x))/(2x to the power of 2+sqrt(x))
  • sinx/2x^2+sqrtx
  • (sin(x)) divide by (2x^2+sqrt(x))
  • (sin(x))/(2x^2+sqrt(x))dx
  • Similar expressions

  • (sin(x))/(2x^2-sqrt(x))
  • (sinx)/(2x^2+sqrt(x))

Integral of (sin(x))/(2x^2+sqrt(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     sin(x)      
 |  ------------ dx
 |     2     ___   
 |  2*x  + \/ x    
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\sqrt{x} + 2 x^{2}}\, dx$$
Integral(sin(x)/(2*x^2 + sqrt(x)), (x, 0, 1))
Numerical answer [src]
0.346111936220875
0.346111936220875

    Use the examples entering the upper and lower limits of integration.