Mister Exam

Other calculators


sin(x/12)*sin(x/3)

Integral of sin(x/12)*sin(x/3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     /x \    /x\   
 |  sin|--|*sin|-| dx
 |     \12/    \3/   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \sin{\left(\frac{x}{12} \right)} \sin{\left(\frac{x}{3} \right)}\, dx$$
Integral(sin(x/12)*sin(x/3), (x, 0, 1))
The answer (Indefinite) [src]
  /                                        /5*x\
 |                                    6*sin|---|
 |    /x \    /x\               /x\        \ 12/
 | sin|--|*sin|-| dx = C + 2*sin|-| - ----------
 |    \12/    \3/               \4/       5     
 |                                              
/                                               
$$\int \sin{\left(\frac{x}{12} \right)} \sin{\left(\frac{x}{3} \right)}\, dx = C + 2 \sin{\left(\frac{x}{4} \right)} - \frac{6 \sin{\left(\frac{5 x}{12} \right)}}{5}$$
The graph
The answer [src]
  16*cos(1/3)*sin(1/12)   4*cos(1/12)*sin(1/3)
- --------------------- + --------------------
            5                      5          
$$- \frac{16 \sin{\left(\frac{1}{12} \right)} \cos{\left(\frac{1}{3} \right)}}{5} + \frac{4 \sin{\left(\frac{1}{3} \right)} \cos{\left(\frac{1}{12} \right)}}{5}$$
=
=
  16*cos(1/3)*sin(1/12)   4*cos(1/12)*sin(1/3)
- --------------------- + --------------------
            5                      5          
$$- \frac{16 \sin{\left(\frac{1}{12} \right)} \cos{\left(\frac{1}{3} \right)}}{5} + \frac{4 \sin{\left(\frac{1}{3} \right)} \cos{\left(\frac{1}{12} \right)}}{5}$$
-16*cos(1/3)*sin(1/12)/5 + 4*cos(1/12)*sin(1/3)/5
Numerical answer [src]
0.00915044223569621
0.00915044223569621
The graph
Integral of sin(x/12)*sin(x/3) dx

    Use the examples entering the upper and lower limits of integration.