Mister Exam

Other calculators

Integral of (sinx/3+cosx/4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                     
  /                     
 |                      
 |  /sin(x)   cos(x)\   
 |  |------ + ------| dx
 |  \  3        4   /   
 |                      
/                       
0                       
$$\int\limits_{0}^{\pi} \left(\frac{\sin{\left(x \right)}}{3} + \frac{\cos{\left(x \right)}}{4}\right)\, dx$$
Integral(sin(x)/3 + cos(x)/4, (x, 0, pi))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                                           
 | /sin(x)   cos(x)\          cos(x)   sin(x)
 | |------ + ------| dx = C - ------ + ------
 | \  3        4   /            3        4   
 |                                           
/                                            
$$\int \left(\frac{\sin{\left(x \right)}}{3} + \frac{\cos{\left(x \right)}}{4}\right)\, dx = C + \frac{\sin{\left(x \right)}}{4} - \frac{\cos{\left(x \right)}}{3}$$
The graph
The answer [src]
2/3
$$\frac{2}{3}$$
=
=
2/3
$$\frac{2}{3}$$
2/3
Numerical answer [src]
0.666666666666667
0.666666666666667

    Use the examples entering the upper and lower limits of integration.