Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x^(-2) Integral of x^(-2)
  • Integral of sin(3x) Integral of sin(3x)
  • Integral of logx Integral of logx
  • Integral of x^2/(1+x) Integral of x^2/(1+x)
  • Identical expressions

  • sinx/sqrt(cos^2x+ four)
  • sinus of x divide by square root of ( co sinus of e of squared x plus 4)
  • sinus of x divide by square root of ( co sinus of e of squared x plus four)
  • sinx/√(cos^2x+4)
  • sinx/sqrt(cos2x+4)
  • sinx/sqrtcos2x+4
  • sinx/sqrt(cos²x+4)
  • sinx/sqrt(cos to the power of 2x+4)
  • sinx/sqrtcos^2x+4
  • sinx divide by sqrt(cos^2x+4)
  • sinx/sqrt(cos^2x+4)dx
  • Similar expressions

  • sinx/sqrt(cos^2x-4)

Integral of sinx/sqrt(cos^2x+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |       sin(x)        
 |  ---------------- dx
 |     _____________   
 |    /    2           
 |  \/  cos (x) + 4    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\sqrt{\cos^{2}{\left(x \right)} + 4}}\, dx$$
Integral(sin(x)/sqrt(cos(x)^2 + 4), (x, 0, 1))
The answer (Indefinite) [src]
  /                            /                   
 |                            |                    
 |      sin(x)                |      sin(x)        
 | ---------------- dx = C +  | ---------------- dx
 |    _____________           |    _____________   
 |   /    2                   |   /        2       
 | \/  cos (x) + 4            | \/  4 + cos (x)    
 |                            |                    
/                            /                     
$$\int \frac{\sin{\left(x \right)}}{\sqrt{\cos^{2}{\left(x \right)} + 4}}\, dx = C + \int \frac{\sin{\left(x \right)}}{\sqrt{\cos^{2}{\left(x \right)} + 4}}\, dx$$
Numerical answer [src]
0.214243233487026
0.214243233487026

    Use the examples entering the upper and lower limits of integration.