Mister Exam

Other calculators

Integral of sinx/sqrt1+2cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  /sin(x)           \   
 |  |------ + 2*cos(x)| dx
 |  |  ___            |   
 |  \\/ 1             /   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(\frac{\sin{\left(x \right)}}{\sqrt{1}} + 2 \cos{\left(x \right)}\right)\, dx$$
Integral(sin(x)/sqrt(1) + 2*cos(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                              
 |                                               
 | /sin(x)           \                           
 | |------ + 2*cos(x)| dx = C - cos(x) + 2*sin(x)
 | |  ___            |                           
 | \\/ 1             /                           
 |                                               
/                                                
$$\int \left(\frac{\sin{\left(x \right)}}{\sqrt{1}} + 2 \cos{\left(x \right)}\right)\, dx = C + 2 \sin{\left(x \right)} - \cos{\left(x \right)}$$
The graph
The answer [src]
1 - cos(1) + 2*sin(1)
$$- \cos{\left(1 \right)} + 1 + 2 \sin{\left(1 \right)}$$
=
=
1 - cos(1) + 2*sin(1)
$$- \cos{\left(1 \right)} + 1 + 2 \sin{\left(1 \right)}$$
1 - cos(1) + 2*sin(1)
Numerical answer [src]
2.14263966374765
2.14263966374765

    Use the examples entering the upper and lower limits of integration.