1 / | | sin(x) | -------- dx | sin(3*x) | / 0
Integral(sin(x)/sin(3*x), (x, 0, 1))
Rewrite the integrand:
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ ___ \ / ___ \ / ___ / ___ /x\\ ___ | \/ 3 /x\| ___ / ___ /x\\ ___ |\/ 3 /x\| | \/ 3 *log|\/ 3 + tan|-|| \/ 3 *log|- ----- + tan|-|| \/ 3 *log|- \/ 3 + tan|-|| \/ 3 *log|----- + tan|-|| | sin(x) \ \2// \ 3 \2// \ \2// \ 3 \2// | -------- dx = C - ------------------------- - --------------------------- + --------------------------- + ------------------------- | sin(3*x) 6 6 6 6 | /
/ / ___\\ / ___\ / / ___\\ / ___ \
___ | | \/ 3 || ___ |\/ 3 | ___ | |\/ 3 || ___ |\/ 3 |
___ / / ___\\ \/ 3 *|pi*I + log|-tan(1/2) + -----|| \/ 3 *log|-----| ___ / ___ \ \/ 3 *|pi*I + log|-----|| ___ / / ___ \\ ___ / ___\ \/ 3 *log|----- + tan(1/2)|
\/ 3 *\pi*I + log\\/ 3 // \ \ 3 // \ 3 / \/ 3 *log\\/ 3 + tan(1/2)/ \ \ 3 // \/ 3 *\pi*I + log\\/ 3 - tan(1/2)// \/ 3 *log\\/ 3 / \ 3 /
- ------------------------- - ------------------------------------- - ---------------- - --------------------------- + ------------------------- + ------------------------------------ + ---------------- + ---------------------------
6 6 6 6 6 6 6 6
=
/ / ___\\ / ___\ / / ___\\ / ___ \
___ | | \/ 3 || ___ |\/ 3 | ___ | |\/ 3 || ___ |\/ 3 |
___ / / ___\\ \/ 3 *|pi*I + log|-tan(1/2) + -----|| \/ 3 *log|-----| ___ / ___ \ \/ 3 *|pi*I + log|-----|| ___ / / ___ \\ ___ / ___\ \/ 3 *log|----- + tan(1/2)|
\/ 3 *\pi*I + log\\/ 3 // \ \ 3 // \ 3 / \/ 3 *log\\/ 3 + tan(1/2)/ \ \ 3 // \/ 3 *\pi*I + log\\/ 3 - tan(1/2)// \/ 3 *log\\/ 3 / \ 3 /
- ------------------------- - ------------------------------------- - ---------------- - --------------------------- + ------------------------- + ------------------------------------ + ---------------- + ---------------------------
6 6 6 6 6 6 6 6
Use the examples entering the upper and lower limits of integration.