Mister Exam

Other calculators

Integral of (sin(x))/(1+sin(x)-cos(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                       
 --                       
 8                        
  /                       
 |                        
 |         sin(x)         
 |  ------------------- dx
 |  1 + sin(x) - cos(x)   
 |                        
/                         
pi                        
--                        
12                        
$$\int\limits_{\frac{\pi}{12}}^{\frac{\pi}{8}} \frac{\sin{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right) - \cos{\left(x \right)}}\, dx$$
Integral(sin(x)/(1 + sin(x) - cos(x)), (x, pi/12, pi/8))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    /       2/x\\                  
 |                                  log|1 + tan |-||                  
 |        sin(x)                x      \        \2//      /       /x\\
 | ------------------- dx = C + - - ---------------- + log|1 + tan|-||
 | 1 + sin(x) - cos(x)          2          2              \       \2//
 |                                                                    
/                                                                     
$$\int \frac{\sin{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right) - \cos{\left(x \right)}}\, dx = C + \frac{x}{2} + \log{\left(\tan{\left(\frac{x}{2} \right)} + 1 \right)} - \frac{\log{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1 \right)}}{2}$$
The graph
The answer [src]
                                                                                                /                                         2\                                                    
                                                                                                |    /                        ___________\ |                                                    
   /                                       2\                                                   |    |                       /       ___ | |                                                    
   |    /                     ___     ___ \ |                                                   |    |                      /  1   \/ 2  | |                                                    
   |    |                   \/ 2    \/ 6  | |                                                   |    |                     /   - + ----- | |                                                    
   |    |                   ----- + ----- | |                                                   |    |       1           \/    2     4   | |                                                    
   |    |       1             4       4   | |                                                log|1 + |---------------- - ----------------| |                                                    
log|1 + |--------------- - ---------------| |                                                   |    |     ___________        ___________| |           /                            ___________\
   |    |    ___     ___       ___     ___| |      /                         ___     ___ \      |    |    /       ___        /       ___ | |           |                           /       ___ |
   |    |  \/ 2    \/ 6      \/ 2    \/ 6 | |      |                       \/ 2    \/ 6  |      |    |   /  1   \/ 2        /  1   \/ 2  | |           |                          /  1   \/ 2  |
   |    |- ----- + -----   - ----- + -----| |      |                       ----- + ----- |      |    |  /   - - -----      /   - - ----- | |           |                         /   - + ----- |
   \    \    4       4         4       4  / /      |           1             4       4   |      \    \\/    2     4      \/    2     4   / /   pi      |           1           \/    2     4   |
--------------------------------------------- - log|1 + --------------- - ---------------| - ----------------------------------------------- + -- + log|1 + ---------------- - ----------------|
                      2                            |        ___     ___       ___     ___|                          2                          48      |         ___________        ___________|
                                                   |      \/ 2    \/ 6      \/ 2    \/ 6 |                                                             |        /       ___        /       ___ |
                                                   |    - ----- + -----   - ----- + -----|                                                             |       /  1   \/ 2        /  1   \/ 2  |
                                                   \        4       4         4       4  /                                                             |      /   - - -----      /   - - ----- |
                                                                                                                                                       \    \/    2     4      \/    2     4   /
$$- \log{\left(- \frac{\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}}{- \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}} + 1 + \frac{1}{- \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}} \right)} - \frac{\log{\left(\left(- \frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}} + \frac{1}{\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}\right)^{2} + 1 \right)}}{2} + \frac{\log{\left(\left(- \frac{\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}}{- \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}} + \frac{1}{- \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}}\right)^{2} + 1 \right)}}{2} + \frac{\pi}{48} + \log{\left(- \frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}} + 1 + \frac{1}{\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}} \right)}$$
=
=
                                                                                                /                                         2\                                                    
                                                                                                |    /                        ___________\ |                                                    
   /                                       2\                                                   |    |                       /       ___ | |                                                    
   |    /                     ___     ___ \ |                                                   |    |                      /  1   \/ 2  | |                                                    
   |    |                   \/ 2    \/ 6  | |                                                   |    |                     /   - + ----- | |                                                    
   |    |                   ----- + ----- | |                                                   |    |       1           \/    2     4   | |                                                    
   |    |       1             4       4   | |                                                log|1 + |---------------- - ----------------| |                                                    
log|1 + |--------------- - ---------------| |                                                   |    |     ___________        ___________| |           /                            ___________\
   |    |    ___     ___       ___     ___| |      /                         ___     ___ \      |    |    /       ___        /       ___ | |           |                           /       ___ |
   |    |  \/ 2    \/ 6      \/ 2    \/ 6 | |      |                       \/ 2    \/ 6  |      |    |   /  1   \/ 2        /  1   \/ 2  | |           |                          /  1   \/ 2  |
   |    |- ----- + -----   - ----- + -----| |      |                       ----- + ----- |      |    |  /   - - -----      /   - - ----- | |           |                         /   - + ----- |
   \    \    4       4         4       4  / /      |           1             4       4   |      \    \\/    2     4      \/    2     4   / /   pi      |           1           \/    2     4   |
--------------------------------------------- - log|1 + --------------- - ---------------| - ----------------------------------------------- + -- + log|1 + ---------------- - ----------------|
                      2                            |        ___     ___       ___     ___|                          2                          48      |         ___________        ___________|
                                                   |      \/ 2    \/ 6      \/ 2    \/ 6 |                                                             |        /       ___        /       ___ |
                                                   |    - ----- + -----   - ----- + -----|                                                             |       /  1   \/ 2        /  1   \/ 2  |
                                                   \        4       4         4       4  /                                                             |      /   - - -----      /   - - ----- |
                                                                                                                                                       \    \/    2     4      \/    2     4   /
$$- \log{\left(- \frac{\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}}{- \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}} + 1 + \frac{1}{- \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}} \right)} - \frac{\log{\left(\left(- \frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}} + \frac{1}{\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}\right)^{2} + 1 \right)}}{2} + \frac{\log{\left(\left(- \frac{\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}}{- \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}} + \frac{1}{- \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}}\right)^{2} + 1 \right)}}{2} + \frac{\pi}{48} + \log{\left(- \frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}} + 1 + \frac{1}{\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}} \right)}$$
log(1 + (1/(-sqrt(2)/4 + sqrt(6)/4) - (sqrt(2)/4 + sqrt(6)/4)/(-sqrt(2)/4 + sqrt(6)/4))^2)/2 - log(1 + 1/(-sqrt(2)/4 + sqrt(6)/4) - (sqrt(2)/4 + sqrt(6)/4)/(-sqrt(2)/4 + sqrt(6)/4)) - log(1 + (1/sqrt(1/2 - sqrt(2)/4) - sqrt(1/2 + sqrt(2)/4)/sqrt(1/2 - sqrt(2)/4))^2)/2 + pi/48 + log(1 + 1/sqrt(1/2 - sqrt(2)/4) - sqrt(1/2 + sqrt(2)/4)/sqrt(1/2 - sqrt(2)/4))
Numerical answer [src]
0.112375902743695
0.112375902743695

    Use the examples entering the upper and lower limits of integration.