Mister Exam

Other calculators

Integral of (sin(x))/(1-cos(x)2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     sin(x)      
 |  ------------ dx
 |  1 - cos(x)*2   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{- 2 \cos{\left(x \right)} + 1}\, dx$$
Integral(sin(x)/(1 - cos(x)*2), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 |    sin(x)             log(1 - cos(x)*2)
 | ------------ dx = C + -----------------
 | 1 - cos(x)*2                  2        
 |                                        
/                                         
$$\int \frac{\sin{\left(x \right)}}{- 2 \cos{\left(x \right)} + 1}\, dx = C + \frac{\log{\left(- 2 \cos{\left(x \right)} + 1 \right)}}{2}$$
The graph
The answer [src]
log(2)   log(-1/2 + cos(1))
------ + ------------------
  2              2         
$$\frac{\log{\left(- \frac{1}{2} + \cos{\left(1 \right)} \right)}}{2} + \frac{\log{\left(2 \right)}}{2}$$
=
=
log(2)   log(-1/2 + cos(1))
------ + ------------------
  2              2         
$$\frac{\log{\left(- \frac{1}{2} + \cos{\left(1 \right)} \right)}}{2} + \frac{\log{\left(2 \right)}}{2}$$
log(2)/2 + log(-1/2 + cos(1))/2
Numerical answer [src]
-1.25909970676736
-1.25909970676736

    Use the examples entering the upper and lower limits of integration.