Mister Exam

Other calculators

Integral of sinx/1-cos^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  /sin(x)      2   \   
 |  |------ - cos (x)| dx
 |  \  1             /   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \left(\frac{\sin{\left(x \right)}}{1} - \cos^{2}{\left(x \right)}\right)\, dx$$
Integral(sin(x)/1 - cos(x)^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of cosine is sine:

              So, the result is:

            Now substitute back in:

          So, the result is:

        1. The integral of a constant is the constant times the variable of integration:

        The result is:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                 
 |                                                  
 | /sin(x)      2   \                   x   sin(2*x)
 | |------ - cos (x)| dx = C - cos(x) - - - --------
 | \  1             /                   2      4    
 |                                                  
/                                                   
$$\int \left(\frac{\sin{\left(x \right)}}{1} - \cos^{2}{\left(x \right)}\right)\, dx = C - \frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4} - \cos{\left(x \right)}$$
The graph
The answer [src]
1            cos(1)*sin(1)
- - cos(1) - -------------
2                  2      
$$- \cos{\left(1 \right)} - \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{1}{2}$$
=
=
1            cos(1)*sin(1)
- - cos(1) - -------------
2                  2      
$$- \cos{\left(1 \right)} - \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{1}{2}$$
1/2 - cos(1) - cos(1)*sin(1)/2
Numerical answer [src]
-0.26762666257456
-0.26762666257456

    Use the examples entering the upper and lower limits of integration.