Integral of sin(x)/(cos(x)+2) dx
The solution
Detail solution
-
Let u=cos(x)+2.
Then let du=−sin(x)dx and substitute −du:
∫(−u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
Now substitute u back in:
−log(cos(x)+2)
-
Now simplify:
−log(cos(x)+2)
-
Add the constant of integration:
−log(cos(x)+2)+constant
The answer is:
−log(cos(x)+2)+constant
The answer (Indefinite)
[src]
/
|
| sin(x)
| ---------- dx = C - log(cos(x) + 2)
| cos(x) + 2
|
/
∫cos(x)+2sin(x)dx=C−log(cos(x)+2)
The graph
-log(2 + cos(1)) + log(3)
−log(cos(1)+2)+log(3)
=
-log(2 + cos(1)) + log(3)
−log(cos(1)+2)+log(3)
-log(2 + cos(1)) + log(3)
Use the examples entering the upper and lower limits of integration.