Mister Exam

Other calculators


sin(x)/(cos(x)+2)

Integral of sin(x)/(cos(x)+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |    sin(x)     
 |  ---------- dx
 |  cos(x) + 2   
 |               
/                
0                
01sin(x)cos(x)+2dx\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\cos{\left(x \right)} + 2}\, dx
Integral(sin(x)/(cos(x) + 2), (x, 0, 1))
Detail solution
  1. Let u=cos(x)+2u = \cos{\left(x \right)} + 2.

    Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

    (1u)du\int \left(- \frac{1}{u}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      1udu=1udu\int \frac{1}{u}\, du = - \int \frac{1}{u}\, du

      1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

      So, the result is: log(u)- \log{\left(u \right)}

    Now substitute uu back in:

    log(cos(x)+2)- \log{\left(\cos{\left(x \right)} + 2 \right)}

  2. Now simplify:

    log(cos(x)+2)- \log{\left(\cos{\left(x \right)} + 2 \right)}

  3. Add the constant of integration:

    log(cos(x)+2)+constant- \log{\left(\cos{\left(x \right)} + 2 \right)}+ \mathrm{constant}


The answer is:

log(cos(x)+2)+constant- \log{\left(\cos{\left(x \right)} + 2 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                    
 |   sin(x)                           
 | ---------- dx = C - log(cos(x) + 2)
 | cos(x) + 2                         
 |                                    
/                                     
sin(x)cos(x)+2dx=Clog(cos(x)+2)\int \frac{\sin{\left(x \right)}}{\cos{\left(x \right)} + 2}\, dx = C - \log{\left(\cos{\left(x \right)} + 2 \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
-log(2 + cos(1)) + log(3)
log(cos(1)+2)+log(3)- \log{\left(\cos{\left(1 \right)} + 2 \right)} + \log{\left(3 \right)}
=
=
-log(2 + cos(1)) + log(3)
log(cos(1)+2)+log(3)- \log{\left(\cos{\left(1 \right)} + 2 \right)} + \log{\left(3 \right)}
-log(2 + cos(1)) + log(3)
Numerical answer [src]
0.166329196661429
0.166329196661429
The graph
Integral of sin(x)/(cos(x)+2) dx

    Use the examples entering the upper and lower limits of integration.