Mister Exam

Other calculators

Integral of sin(x)/(cos²(x)+16) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     sin(x)      
 |  ------------ dx
 |     2           
 |  cos (x) + 16   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)} + 16}\, dx$$
Integral(sin(x)/(cos(x)^2 + 16), (x, 0, 1))
The answer (Indefinite) [src]
  /                          /cos(x)\
 |                       atan|------|
 |    sin(x)                 \  4   /
 | ------------ dx = C - ------------
 |    2                       4      
 | cos (x) + 16                      
 |                                   
/                                    
$$\int \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)} + 16}\, dx = C - \frac{\operatorname{atan}{\left(\frac{\cos{\left(x \right)}}{4} \right)}}{4}$$
The graph
The answer [src]
      /cos(1)\            
  atan|------|            
      \  4   /   atan(1/4)
- ------------ + ---------
       4             4    
$$- \frac{\operatorname{atan}{\left(\frac{\cos{\left(1 \right)}}{4} \right)}}{4} + \frac{\operatorname{atan}{\left(\frac{1}{4} \right)}}{4}$$
=
=
      /cos(1)\            
  atan|------|            
      \  4   /   atan(1/4)
- ------------ + ---------
       4             4    
$$- \frac{\operatorname{atan}{\left(\frac{\cos{\left(1 \right)}}{4} \right)}}{4} + \frac{\operatorname{atan}{\left(\frac{1}{4} \right)}}{4}$$
-atan(cos(1)/4)/4 + atan(1/4)/4
Numerical answer [src]
0.0276789280447312
0.0276789280447312

    Use the examples entering the upper and lower limits of integration.