1 / | | sin(x) | ------------ dx | 5*cos(x) + 3 | / 0
Integral(sin(x)/(5*cos(x) + 3), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | | sin(x) log(5*cos(x) + 3) | ------------ dx = C - ----------------- | 5*cos(x) + 3 5 | /
log(3/5 + cos(1)) log(8/5)
- ----------------- + --------
5 5
=
log(3/5 + cos(1)) log(8/5)
- ----------------- + --------
5 5
-log(3/5 + cos(1))/5 + log(8/5)/5
Use the examples entering the upper and lower limits of integration.