1 / | | sin(x) | ------------ dx | 2*cos(x) - 3 | / 0
Integral(sin(x)/(2*cos(x) - 3), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | | sin(x) log(2*cos(x) - 3) | ------------ dx = C - ----------------- | 2*cos(x) - 3 2 | /
log(2) log(3/2 - cos(1))
- ------ - -----------------
2 2
=
log(2) log(3/2 - cos(1))
- ------ - -----------------
2 2
-log(2)/2 - log(3/2 - cos(1))/2
Use the examples entering the upper and lower limits of integration.