Mister Exam

Other calculators

Integral of sinx/(2cosx-3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     sin(x)      
 |  ------------ dx
 |  2*cos(x) - 3   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sin{\left(x \right)}}{2 \cos{\left(x \right)} - 3}\, dx$$
Integral(sin(x)/(2*cos(x) - 3), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is .

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 |    sin(x)             log(2*cos(x) - 3)
 | ------------ dx = C - -----------------
 | 2*cos(x) - 3                  2        
 |                                        
/                                         
$$\int \frac{\sin{\left(x \right)}}{2 \cos{\left(x \right)} - 3}\, dx = C - \frac{\log{\left(2 \cos{\left(x \right)} - 3 \right)}}{2}$$
The graph
The answer [src]
  log(2)   log(3/2 - cos(1))
- ------ - -----------------
    2              2        
$$- \frac{\log{\left(2 \right)}}{2} - \frac{\log{\left(\frac{3}{2} - \cos{\left(1 \right)} \right)}}{2}$$
=
=
  log(2)   log(3/2 - cos(1))
- ------ - -----------------
    2              2        
$$- \frac{\log{\left(2 \right)}}{2} - \frac{\log{\left(\frac{3}{2} - \cos{\left(1 \right)} \right)}}{2}$$
-log(2)/2 - log(3/2 - cos(1))/2
Numerical answer [src]
-0.326005117250841
-0.326005117250841

    Use the examples entering the upper and lower limits of integration.