Mister Exam

Other calculators


(sin(x))²/(1+cos(x))³

Integral of (sin(x))²/(1+cos(x))³ dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        2         
 |     sin (x)      
 |  ------------- dx
 |              3   
 |  (1 + cos(x))    
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{\sin^{2}{\left(x \right)}}{\left(\cos{\left(x \right)} + 1\right)^{3}}\, dx$$
Integral(sin(x)^2/(1 + cos(x))^3, (x, 0, 1))
The answer (Indefinite) [src]
  /                              
 |                           3/x\
 |       2                tan |-|
 |    sin (x)                 \2/
 | ------------- dx = C + -------
 |             3             3   
 | (1 + cos(x))                  
 |                               
/                                
$$\int \frac{\sin^{2}{\left(x \right)}}{\left(\cos{\left(x \right)} + 1\right)^{3}}\, dx = C + \frac{\tan^{3}{\left(\frac{x}{2} \right)}}{3}$$
The graph
The answer [src]
   3     
tan (1/2)
---------
    3    
$$\frac{\tan^{3}{\left(\frac{1}{2} \right)}}{3}$$
=
=
   3     
tan (1/2)
---------
    3    
$$\frac{\tan^{3}{\left(\frac{1}{2} \right)}}{3}$$
tan(1/2)^3/3
Numerical answer [src]
0.0543473390305551
0.0543473390305551
The graph
Integral of (sin(x))²/(1+cos(x))³ dx

    Use the examples entering the upper and lower limits of integration.