Mister Exam

Other calculators


sin(x)²/cos(x)⁴

Integral of sin(x)²/cos(x)⁴ dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     2      
 |  sin (x)   
 |  ------- dx
 |     4      
 |  cos (x)   
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{\sin^{2}{\left(x \right)}}{\cos^{4}{\left(x \right)}}\, dx$$
Integral(sin(x)^2/cos(x)^4, (x, 0, 1))
The answer (Indefinite) [src]
  /                                     
 |                                      
 |    2                                 
 | sin (x)           sin(x)      sin(x) 
 | ------- dx = C - -------- + ---------
 |    4             3*cos(x)        3   
 | cos (x)                     3*cos (x)
 |                                      
/                                       
$$\int \frac{\sin^{2}{\left(x \right)}}{\cos^{4}{\left(x \right)}}\, dx = C - \frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}} + \frac{\sin{\left(x \right)}}{3 \cos^{3}{\left(x \right)}}$$
The graph
The answer [src]
   sin(1)      sin(1) 
- -------- + ---------
  3*cos(1)        3   
             3*cos (1)
$$- \frac{\sin{\left(1 \right)}}{3 \cos{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{3 \cos^{3}{\left(1 \right)}}$$
=
=
   sin(1)      sin(1) 
- -------- + ---------
  3*cos(1)        3   
             3*cos (1)
$$- \frac{\sin{\left(1 \right)}}{3 \cos{\left(1 \right)}} + \frac{\sin{\left(1 \right)}}{3 \cos^{3}{\left(1 \right)}}$$
-sin(1)/(3*cos(1)) + sin(1)/(3*cos(1)^3)
Numerical answer [src]
1.25917391594425
1.25917391594425
The graph
Integral of sin(x)²/cos(x)⁴ dx

    Use the examples entering the upper and lower limits of integration.