Mister Exam

Other calculators


sin(2x)/sqrt(1-4sin(x)^2)
  • How to use it?

  • Integral of d{x}:
  • Integral of xe^2 Integral of xe^2
  • Integral of ln²xdx
  • Integral of sin(2x)/sqrt(1-4sin(x)^2) Integral of sin(2x)/sqrt(1-4sin(x)^2)
  • Integral of 0.02x
  • Identical expressions

  • sin(two x)/sqrt(one -4sin(x)^2)
  • sinus of (2x) divide by square root of (1 minus 4 sinus of (x) squared )
  • sinus of (two x) divide by square root of (one minus 4 sinus of (x) squared )
  • sin(2x)/√(1-4sin(x)^2)
  • sin(2x)/sqrt(1-4sin(x)2)
  • sin2x/sqrt1-4sinx2
  • sin(2x)/sqrt(1-4sin(x)²)
  • sin(2x)/sqrt(1-4sin(x) to the power of 2)
  • sin2x/sqrt1-4sinx^2
  • sin(2x) divide by sqrt(1-4sin(x)^2)
  • sin(2x)/sqrt(1-4sin(x)^2)dx
  • Similar expressions

  • sin(2x)/sqrt(1+4sin(x)^2)
  • sin(2x)/sqrt(1-4sinx^2)

Integral of sin(2x)/sqrt(1-4sin(x)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |       sin(2*x)        
 |  ------------------ dx
 |     _______________   
 |    /          2       
 |  \/  1 - 4*sin (x)    
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{\sin{\left(2 x \right)}}{\sqrt{1 - 4 \sin^{2}{\left(x \right)}}}\, dx$$
Integral(sin(2*x)/(sqrt(1 - 4*sin(x)^2)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               _______________
 |                               /          2    
 |      sin(2*x)               \/  1 - 4*sin (x) 
 | ------------------ dx = C - ------------------
 |    _______________                  2         
 |   /          2                                
 | \/  1 - 4*sin (x)                             
 |                                               
/                                                
$$\int \frac{\sin{\left(2 x \right)}}{\sqrt{1 - 4 \sin^{2}{\left(x \right)}}}\, dx = C - \frac{\sqrt{1 - 4 \sin^{2}{\left(x \right)}}}{2}$$
The graph
The answer [src]
       _______________
      /          2    
1   \/  1 - 4*sin (1) 
- - ------------------
2           2         
$$\frac{1}{2} - \frac{\sqrt{1 - 4 \sin^{2}{\left(1 \right)}}}{2}$$
=
=
       _______________
      /          2    
1   \/  1 - 4*sin (1) 
- - ------------------
2           2         
$$\frac{1}{2} - \frac{\sqrt{1 - 4 \sin^{2}{\left(1 \right)}}}{2}$$
Numerical answer [src]
(0.430126213598387 - 0.783630810530614j)
(0.430126213598387 - 0.783630810530614j)
The graph
Integral of sin(2x)/sqrt(1-4sin(x)^2) dx

    Use the examples entering the upper and lower limits of integration.