1 / | | sin(2*x) | ------------------ dx | _______________ | / 2 | \/ 1 - 4*sin (x) | / 0
Integral(sin(2*x)/(sqrt(1 - 4*sin(x)^2)), (x, 0, 1))
There are multiple ways to do this integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ _______________ | / 2 | sin(2*x) \/ 1 - 4*sin (x) | ------------------ dx = C - ------------------ | _______________ 2 | / 2 | \/ 1 - 4*sin (x) | /
_______________ / 2 1 \/ 1 - 4*sin (1) - - ------------------ 2 2
=
_______________ / 2 1 \/ 1 - 4*sin (1) - - ------------------ 2 2
(0.430126213598387 - 0.783630810530614j)
(0.430126213598387 - 0.783630810530614j)
Use the examples entering the upper and lower limits of integration.