1 / | | sin(2*x) | ---------- dx | -sin(x) | 2*e | / 0
Integral(sin(2*x)/((2*exp(-sin(x)))), (x, 0, 1))
Rewrite the integrand:
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
The integral of the exponential function is itself.
Now evaluate the sub-integral.
The integral of the exponential function is itself.
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | | sin(2*x) sin(x) sin(x) | ---------- dx = C - e + e *sin(x) | -sin(x) | 2*e | /
sin(1) sin(1) 1 - e + e *sin(1)
=
sin(1) sin(1) 1 - e + e *sin(1)
1 - exp(sin(1)) + exp(sin(1))*sin(1)
Use the examples entering the upper and lower limits of integration.