Mister Exam

Other calculators

Integral of sin(2x)/(2*exp(-sinx)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |   sin(2*x)    
 |  ---------- dx
 |     -sin(x)   
 |  2*e          
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\sin{\left(2 x \right)}}{2 e^{- \sin{\left(x \right)}}}\, dx$$
Integral(sin(2*x)/((2*exp(-sin(x)))), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Let .

    Then let and substitute :

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of the exponential function is itself.

      Now evaluate the sub-integral.

    2. The integral of the exponential function is itself.

    Now substitute back in:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                                             
 |  sin(2*x)            sin(x)    sin(x)       
 | ---------- dx = C - e       + e      *sin(x)
 |    -sin(x)                                  
 | 2*e                                         
 |                                             
/                                              
$$\int \frac{\sin{\left(2 x \right)}}{2 e^{- \sin{\left(x \right)}}}\, dx = C + e^{\sin{\left(x \right)}} \sin{\left(x \right)} - e^{\sin{\left(x \right)}}$$
The graph
The answer [src]
     sin(1)    sin(1)       
1 - e       + e      *sin(1)
$$- e^{\sin{\left(1 \right)}} + 1 + e^{\sin{\left(1 \right)}} \sin{\left(1 \right)}$$
=
=
     sin(1)    sin(1)       
1 - e       + e      *sin(1)
$$- e^{\sin{\left(1 \right)}} + 1 + e^{\sin{\left(1 \right)}} \sin{\left(1 \right)}$$
1 - exp(sin(1)) + exp(sin(1))*sin(1)
Numerical answer [src]
0.632248064512331
0.632248064512331

    Use the examples entering the upper and lower limits of integration.