Mister Exam

Other calculators

Integral of sin(2+3ln(x))/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(2 + 3*log(x))   
 |  ----------------- dx
 |          x           
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{\sin{\left(3 \log{\left(x \right)} + 2 \right)}}{x}\, dx$$
Integral(sin(2 + 3*log(x))/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                                             
 | sin(2 + 3*log(x))          cos(2 + 3*log(x))
 | ----------------- dx = C - -----------------
 |         x                          3        
 |                                             
/                                              
$$\int \frac{\sin{\left(3 \log{\left(x \right)} + 2 \right)}}{x}\, dx = C - \frac{\cos{\left(3 \log{\left(x \right)} + 2 \right)}}{3}$$
The answer [src]
   1   cos(2)  1   cos(2) 
<- - - ------, - - ------>
   3     3     3     3    
$$\left\langle - \frac{1}{3} - \frac{\cos{\left(2 \right)}}{3}, \frac{1}{3} - \frac{\cos{\left(2 \right)}}{3}\right\rangle$$
=
=
   1   cos(2)  1   cos(2) 
<- - - ------, - - ------>
   3     3     3     3    
$$\left\langle - \frac{1}{3} - \frac{\cos{\left(2 \right)}}{3}, \frac{1}{3} - \frac{\cos{\left(2 \right)}}{3}\right\rangle$$
AccumBounds(-1/3 - cos(2)/3, 1/3 - cos(2)/3)
Numerical answer [src]
0.0966483783510806
0.0966483783510806

    Use the examples entering the upper and lower limits of integration.