Mister Exam

Other calculators

Integral of sin(2*x)*sin(6*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(2*x)*sin(6*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(2 x \right)} \sin{\left(6 x \right)}\, dx$$
Integral(sin(2*x)*sin(6*x), (x, 0, 1))
The graph
The answer [src]
  3*cos(6)*sin(2)   cos(2)*sin(6)
- --------------- + -------------
         16               16     
$$- \frac{3 \sin{\left(2 \right)} \cos{\left(6 \right)}}{16} + \frac{\sin{\left(6 \right)} \cos{\left(2 \right)}}{16}$$
=
=
  3*cos(6)*sin(2)   cos(2)*sin(6)
- --------------- + -------------
         16               16     
$$- \frac{3 \sin{\left(2 \right)} \cos{\left(6 \right)}}{16} + \frac{\sin{\left(6 \right)} \cos{\left(2 \right)}}{16}$$
-3*cos(6)*sin(2)/16 + cos(2)*sin(6)/16
Numerical answer [src]
-0.156435202327452
-0.156435202327452

    Use the examples entering the upper and lower limits of integration.