Mister Exam

Other calculators

Integral of sin(2*x-pi/3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     /      pi\   
 |  sin|2*x - --| dx
 |     \      3 /   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sin{\left(2 x - \frac{\pi}{3} \right)}\, dx$$
Integral(sin(2*x - pi/3), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          /      pi\
 |                        cos|2*x - --|
 |    /      pi\             \      3 /
 | sin|2*x - --| dx = C - -------------
 |    \      3 /                2      
 |                                     
/                                      
$$\int \sin{\left(2 x - \frac{\pi}{3} \right)}\, dx = C - \frac{\cos{\left(2 x - \frac{\pi}{3} \right)}}{2}$$
The graph
The answer [src]
       /    pi\
    sin|2 + --|
1      \    6 /
- - -----------
4        2     
$$\frac{1}{4} - \frac{\sin{\left(\frac{\pi}{6} + 2 \right)}}{2}$$
=
=
       /    pi\
    sin|2 + --|
1      \    6 /
- - -----------
4        2     
$$\frac{1}{4} - \frac{\sin{\left(\frac{\pi}{6} + 2 \right)}}{2}$$
1/4 - sin(2 + pi/6)/2
Numerical answer [src]
-0.0397006264766454
-0.0397006264766454

    Use the examples entering the upper and lower limits of integration.