Mister Exam

Other calculators

Integral of sin^3(pi*x/a) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  a              
  /              
 |               
 |     3/pi*x\   
 |  sin |----| dx
 |      \ a  /   
 |               
/                
0                
$$\int\limits_{0}^{a} \sin^{3}{\left(\frac{\pi x}{a} \right)}\, dx$$
Integral(sin((pi*x)/a)^3, (x, 0, a))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          1. The integral of a constant is the constant times the variable of integration:

          The result is:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                                            3/pi*x\
                                       a*cos |----|
  /                           /pi*x\         \ a  /
 |                     - a*cos|----| + ------------
 |    3/pi*x\                 \ a  /        3      
 | sin |----| dx = C + ----------------------------
 |     \ a  /                       pi             
 |                                                 
/                                                  
$$\int \sin^{3}{\left(\frac{\pi x}{a} \right)}\, dx = C + \frac{\frac{a \cos^{3}{\left(\frac{\pi x}{a} \right)}}{3} - a \cos{\left(\frac{\pi x}{a} \right)}}{\pi}$$
The answer [src]
/4*a                                   
|----  for And(a > -oo, a < oo, a != 0)
<3*pi                                  
|                                      
\ 0               otherwise            
$$\begin{cases} \frac{4 a}{3 \pi} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
=
/4*a                                   
|----  for And(a > -oo, a < oo, a != 0)
<3*pi                                  
|                                      
\ 0               otherwise            
$$\begin{cases} \frac{4 a}{3 \pi} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((4*a/(3*pi), (a > -oo)∧(a < oo)∧(Ne(a, 0))), (0, True))

    Use the examples entering the upper and lower limits of integration.