Integral of sin^6*x*cosxdx dx
The solution
Detail solution
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
-
Add the constant of integration:
7sin7(x)+constant
The answer is:
7sin7(x)+constant
The answer (Indefinite)
[src]
/
| 7
| 6 sin (x)
| sin (x)*cos(x) dx = C + -------
| 7
/
∫sin6(x)cos(x)dx=C+7sin7(x)
The graph
7sin7(1)
=
7sin7(1)
Use the examples entering the upper and lower limits of integration.