Mister Exam

Other calculators


sin^6*x*cosxdx

Integral of sin^6*x*cosxdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |     6             
 |  sin (x)*cos(x) dx
 |                   
/                    
0                    
01sin6(x)cos(x)dx\int\limits_{0}^{1} \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx
Integral(sin(x)^6*cos(x), (x, 0, 1))
Detail solution
  1. Let u=sin(x)u = \sin{\left(x \right)}.

    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

    u6du\int u^{6}\, du

    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

      u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

    Now substitute uu back in:

    sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

  2. Add the constant of integration:

    sin7(x)7+constant\frac{\sin^{7}{\left(x \right)}}{7}+ \mathrm{constant}


The answer is:

sin7(x)7+constant\frac{\sin^{7}{\left(x \right)}}{7}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                            7   
 |    6                    sin (x)
 | sin (x)*cos(x) dx = C + -------
 |                            7   
/                                 
sin6(x)cos(x)dx=C+sin7(x)7\int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx = C + \frac{\sin^{7}{\left(x \right)}}{7}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.00.2
The answer [src]
   7   
sin (1)
-------
   7   
sin7(1)7\frac{\sin^{7}{\left(1 \right)}}{7}
=
=
   7   
sin (1)
-------
   7   
sin7(1)7\frac{\sin^{7}{\left(1 \right)}}{7}
sin(1)^7/7
Numerical answer [src]
0.0426752405751304
0.0426752405751304
The graph
Integral of sin^6*x*cosxdx dx

    Use the examples entering the upper and lower limits of integration.