Mister Exam

Other calculators


sin^5(2x)

Integral of sin^5(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     5        
 |  sin (2*x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} \sin^{5}{\left(2 x \right)}\, dx$$
The graph
The answer [src]
                 5         3   
4    cos(2)   cos (2)   cos (2)
-- - ------ - ------- + -------
15     2         10        3   
$${{4}\over{15}}-{{3\,\cos ^52-10\,\cos ^32+15\,\cos 2}\over{30}}$$
=
=
                 5         3   
4    cos(2)   cos (2)   cos (2)
-- - ------ - ------- + -------
15     2         10        3   
$$\frac{\cos^{3}{\left(2 \right)}}{3} - \frac{\cos^{5}{\left(2 \right)}}{10} - \frac{\cos{\left(2 \right)}}{2} + \frac{4}{15}$$
Numerical answer [src]
0.45196561924075
0.45196561924075
The graph
Integral of sin^5(2x) dx

    Use the examples entering the upper and lower limits of integration.