1 / | | 6 3 | sin (x)*cos (x) dx | / 0
Integral(sin(x)^6*cos(x)^3, (x, 0, 1))
Rewrite the integrand:
There are multiple ways to do this integral.
Let .
Then let and substitute :
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of is when :
The result is:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The result is:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
The result is:
Add the constant of integration:
The answer is:
/ | 9 7 | 6 3 sin (x) sin (x) | sin (x)*cos (x) dx = C - ------- + ------- | 9 7 /
9 7 sin (1) sin (1) - ------- + ------- 9 7
=
9 7 sin (1) sin (1) - ------- + ------- 9 7
-sin(1)^9/9 + sin(1)^7/7
Use the examples entering the upper and lower limits of integration.