Mister Exam

Other calculators


sin^6xcos^3x

Integral of sin^6xcos^3x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     6       3      
 |  sin (x)*cos (x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \sin^{6}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx$$
Integral(sin(x)^6*cos(x)^3, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of is when :

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                             9         7   
 |    6       3             sin (x)   sin (x)
 | sin (x)*cos (x) dx = C - ------- + -------
 |                             9         7   
/                                            
$$\int \sin^{6}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx = C - \frac{\sin^{9}{\left(x \right)}}{9} + \frac{\sin^{7}{\left(x \right)}}{7}$$
The graph
The answer [src]
     9         7   
  sin (1)   sin (1)
- ------- + -------
     9         7   
$$- \frac{\sin^{9}{\left(1 \right)}}{9} + \frac{\sin^{7}{\left(1 \right)}}{7}$$
=
=
     9         7   
  sin (1)   sin (1)
- ------- + -------
     9         7   
$$- \frac{\sin^{9}{\left(1 \right)}}{9} + \frac{\sin^{7}{\left(1 \right)}}{7}$$
-sin(1)^9/9 + sin(1)^7/7
Numerical answer [src]
0.019172971209824
0.019172971209824
The graph
Integral of sin^6xcos^3x dx

    Use the examples entering the upper and lower limits of integration.