Mister Exam

Other calculators


sin^5x-cosx

Integral of sin^5x-cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  /   5            \   
 |  \sin (x) - cos(x)/ dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \left(\sin^{5}{\left(x \right)} - \cos{\left(x \right)}\right)\, dx$$
Integral(sin(x)^5 - cos(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Rewrite the integrand:

    2. There are multiple ways to do this integral.

      Method #1

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

        1. The integral of sine is negative cosine:

        The result is:

      Method #2

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

        1. The integral of sine is negative cosine:

        The result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                 
 |                                                  5           3   
 | /   5            \                            cos (x)   2*cos (x)
 | \sin (x) - cos(x)/ dx = C - cos(x) - sin(x) - ------- + ---------
 |                                                  5          3    
/                                                                   
$$-\sin x-{{\cos ^5x}\over{5}}+{{2\,\cos ^3x}\over{3}}-\cos x$$
The graph
The answer [src]
                          5           3   
8                      cos (1)   2*cos (1)
-- - cos(1) - sin(1) - ------- + ---------
15                        5          3    
$$-{{15\,\sin 1+3\,\cos ^51-10\,\cos ^31+15\,\cos 1-8}\over{15}}$$
=
=
                          5           3   
8                      cos (1)   2*cos (1)
-- - cos(1) - sin(1) - ------- + ---------
15                        5          3    
$$- \sin{\left(1 \right)} - \cos{\left(1 \right)} - \frac{\cos^{5}{\left(1 \right)}}{5} + \frac{2 \cos^{3}{\left(1 \right)}}{3} + \frac{8}{15}$$
Numerical answer [src]
-0.752496588356321
-0.752496588356321
The graph
Integral of sin^5x-cosx dx

    Use the examples entering the upper and lower limits of integration.