Mister Exam

Other calculators

Integral of sin^5xcos^3xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 POST_GRBEK_SMALL_pi                    
 -------------------                    
          2                             
          /                             
         |                              
         |             5       3        
         |          sin (x)*cos (x)*1 dx
         |                              
        /                               
        0                               
$$\int\limits_{0}^{\frac{POST_{GRBEK SMALL \pi}}{2}} \sin^{5}{\left(x \right)} \cos^{3}{\left(x \right)} 1\, dx$$
Integral(sin(x)^5*cos(x)^3*1, (x, 0, POST_GRBEK_SMALL_pi/2))
The answer [src]
     8/POST_GRBEK_SMALL_pi\      6/POST_GRBEK_SMALL_pi\
  sin |-------------------|   sin |-------------------|
      \         2         /       \         2         /
- ------------------------- + -------------------------
              8                           6            
$$- \frac{\sin^{8}{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)}}{8} + \frac{\sin^{6}{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)}}{6}$$
=
=
     8/POST_GRBEK_SMALL_pi\      6/POST_GRBEK_SMALL_pi\
  sin |-------------------|   sin |-------------------|
      \         2         /       \         2         /
- ------------------------- + -------------------------
              8                           6            
$$- \frac{\sin^{8}{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)}}{8} + \frac{\sin^{6}{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)}}{6}$$

    Use the examples entering the upper and lower limits of integration.