Integral of sin^4x*d*sin(x) dx
The solution
The answer (Indefinite)
[src]
/
| / 5 3 2 \
| 4 | 8*cos (x) 4 4*cos (x)*sin (x)|
| sin (x)*d*sin(x) dx = C + d*|- --------- - sin (x)*cos(x) - -----------------|
| \ 15 3 /
/
$$\int d \sin^{4}{\left(x \right)} \sin{\left(x \right)}\, dx = C + d \left(- \sin^{4}{\left(x \right)} \cos{\left(x \right)} - \frac{4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)}}{3} - \frac{8 \cos^{5}{\left(x \right)}}{15}\right)$$
/ 5 3 \
8*d | cos (1) 2*cos (1)|
--- + d*|-cos(1) - ------- + ---------|
15 \ 5 3 /
$$d \left(- \cos{\left(1 \right)} - \frac{\cos^{5}{\left(1 \right)}}{5} + \frac{2 \cos^{3}{\left(1 \right)}}{3}\right) + \frac{8 d}{15}$$
=
/ 5 3 \
8*d | cos (1) 2*cos (1)|
--- + d*|-cos(1) - ------- + ---------|
15 \ 5 3 /
$$d \left(- \cos{\left(1 \right)} - \frac{\cos^{5}{\left(1 \right)}}{5} + \frac{2 \cos^{3}{\left(1 \right)}}{3}\right) + \frac{8 d}{15}$$
8*d/15 + d*(-cos(1) - cos(1)^5/5 + 2*cos(1)^3/3)
Use the examples entering the upper and lower limits of integration.