Mister Exam

Other calculators


sin^4xcos^3xdx

Integral of sin^4xcos^3xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |     4       3        
 |  sin (x)*cos (x)*1 dx
 |                      
/                       
0                       
01sin4(x)cos3(x)1dx\int\limits_{0}^{1} \sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)} 1\, dx
Integral(sin(x)^4*cos(x)^3*1, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin4(x)cos3(x)1=(1sin2(x))sin4(x)cos(x)\sin^{4}{\left(x \right)} \cos^{3}{\left(x \right)} 1 = \left(1 - \sin^{2}{\left(x \right)}\right) \sin^{4}{\left(x \right)} \cos{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=sin(x)u = \sin{\left(x \right)}.

      Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

      (u6+u4)du\int \left(- u^{6} + u^{4}\right)\, du

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (u6)du=u6du\int \left(- u^{6}\right)\, du = - \int u^{6}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          So, the result is: u77- \frac{u^{7}}{7}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

        The result is: u77+u55- \frac{u^{7}}{7} + \frac{u^{5}}{5}

      Now substitute uu back in:

      sin7(x)7+sin5(x)5- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}

    Method #2

    1. Rewrite the integrand:

      (1sin2(x))sin4(x)cos(x)=sin6(x)cos(x)+sin4(x)cos(x)\left(1 - \sin^{2}{\left(x \right)}\right) \sin^{4}{\left(x \right)} \cos{\left(x \right)} = - \sin^{6}{\left(x \right)} \cos{\left(x \right)} + \sin^{4}{\left(x \right)} \cos{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin6(x)cos(x))dx=sin6(x)cos(x)dx\int \left(- \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u6du\int u^{6}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          Now substitute uu back in:

          sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

        So, the result is: sin7(x)7- \frac{\sin^{7}{\left(x \right)}}{7}

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        u4du\int u^{4}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

        Now substitute uu back in:

        sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

      The result is: sin7(x)7+sin5(x)5- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}

    Method #3

    1. Rewrite the integrand:

      (1sin2(x))sin4(x)cos(x)=sin6(x)cos(x)+sin4(x)cos(x)\left(1 - \sin^{2}{\left(x \right)}\right) \sin^{4}{\left(x \right)} \cos{\left(x \right)} = - \sin^{6}{\left(x \right)} \cos{\left(x \right)} + \sin^{4}{\left(x \right)} \cos{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin6(x)cos(x))dx=sin6(x)cos(x)dx\int \left(- \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u6du\int u^{6}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          Now substitute uu back in:

          sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

        So, the result is: sin7(x)7- \frac{\sin^{7}{\left(x \right)}}{7}

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        u4du\int u^{4}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

        Now substitute uu back in:

        sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

      The result is: sin7(x)7+sin5(x)5- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}

  3. Add the constant of integration:

    sin7(x)7+sin5(x)5+constant- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}+ \mathrm{constant}


The answer is:

sin7(x)7+sin5(x)5+constant- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{\sin^{5}{\left(x \right)}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                            
 |                               7         5   
 |    4       3               sin (x)   sin (x)
 | sin (x)*cos (x)*1 dx = C - ------- + -------
 |                               7         5   
/                                              
5sin7x7sin5x35-{{5\,\sin ^7x-7\,\sin ^5x}\over{35}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.000.10
The answer [src]
     7         5   
  sin (1)   sin (1)
- ------- + -------
     7         5   
5sin717sin5135-{{5\,\sin ^71-7\,\sin ^51}\over{35}}
=
=
     7         5   
  sin (1)   sin (1)
- ------- + -------
     7         5   
sin7(1)7+sin5(1)5- \frac{\sin^{7}{\left(1 \right)}}{7} + \frac{\sin^{5}{\left(1 \right)}}{5}
Numerical answer [src]
0.0417020785888258
0.0417020785888258
The graph
Integral of sin^4xcos^3xdx dx

    Use the examples entering the upper and lower limits of integration.