Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x^(-2) Integral of x^(-2)
  • Integral of sin(3x) Integral of sin(3x)
  • Integral of logx Integral of logx
  • Integral of x^2/(1+x) Integral of x^2/(1+x)
  • Identical expressions

  • (sin(three x))/((cos(3x)^(four \3)))
  • ( sinus of (3x)) divide by (( co sinus of e of (3x) to the power of (4\3)))
  • ( sinus of (three x)) divide by (( co sinus of e of (3x) to the power of (four \3)))
  • (sin(3x))/((cos(3x)(4\3)))
  • sin3x/cos3x4\3
  • sin3x/cos3x^4\3
  • (sin(3x)) divide by ((cos(3x)^(4\3)))
  • (sin(3x))/((cos(3x)^(4\3)))dx

Integral of (sin(3x))/((cos(3x)^(4\3))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    sin(3*x)    
 |  ----------- dx
 |     4/3        
 |  cos   (3*x)   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\sin{\left(3 x \right)}}{\cos^{\frac{4}{3}}{\left(3 x \right)}}\, dx$$
Integral(sin(3*x)/cos(3*x)^(4/3), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                                  
 |   sin(3*x)                1      
 | ----------- dx = C + ------------
 |    4/3               3 __________
 | cos   (3*x)          \/ cos(3*x) 
 |                                  
/                                   
$$\int \frac{\sin{\left(3 x \right)}}{\cos^{\frac{4}{3}}{\left(3 x \right)}}\, dx = C + \frac{1}{\sqrt[3]{\cos{\left(3 x \right)}}}$$
The graph
The answer [src]
         1               /    2/3\
oo + ---------- + oo*sign\(-3)   /
     3 ________                   
     \/ cos(3)                    
$$\infty + \frac{1}{\sqrt[3]{\cos{\left(3 \right)}}} + \infty \operatorname{sign}{\left(\left(-3\right)^{\frac{2}{3}} \right)}$$
=
=
         1               /    2/3\
oo + ---------- + oo*sign\(-3)   /
     3 ________                   
     \/ cos(3)                    
$$\infty + \frac{1}{\sqrt[3]{\cos{\left(3 \right)}}} + \infty \operatorname{sign}{\left(\left(-3\right)^{\frac{2}{3}} \right)}$$
oo + cos(3)^(-1/3) + oo*sign((-3)^(2/3))
Numerical answer [src]
(-14.0822511887913 + 29.1794086862673j)
(-14.0822511887913 + 29.1794086862673j)

    Use the examples entering the upper and lower limits of integration.