1 / | | sin(3*x) | ----------- dx | 4/3 | cos (3*x) | / 0
Integral(sin(3*x)/cos(3*x)^(4/3), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | sin(3*x) 1 | ----------- dx = C + ------------ | 4/3 3 __________ | cos (3*x) \/ cos(3*x) | /
1 / 2/3\ oo + ---------- + oo*sign\(-3) / 3 ________ \/ cos(3)
=
1 / 2/3\ oo + ---------- + oo*sign\(-3) / 3 ________ \/ cos(3)
oo + cos(3)^(-1/3) + oo*sign((-3)^(2/3))
(-14.0822511887913 + 29.1794086862673j)
(-14.0822511887913 + 29.1794086862673j)
Use the examples entering the upper and lower limits of integration.