Mister Exam

Integral of sin^25x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     25      
 |  sin  (x) dx
 |             
/              
0              
$$\int\limits_{0}^{1} \sin^{25}{\left(x \right)}\, dx$$
Integral(sin(x)^25, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of sine is negative cosine:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of sine is negative cosine:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                                                                                                             
 |                                                                          13             17            5            21         25            23             7             19             15   
 |    25                            9           3            11      924*cos  (x)   495*cos  (x)   66*cos (x)   22*cos  (x)   cos  (x)   12*cos  (x)   220*cos (x)   220*cos  (x)   264*cos  (x)
 | sin  (x) dx = C - cos(x) - 55*cos (x) + 4*cos (x) + 72*cos  (x) - ------------ - ------------ - ---------- - ----------- - -------- + ----------- + ----------- + ------------ + ------------
 |                                                                        13             17            5             7           25           23            7             19             5      
/                                                                                                                                                                                               
$$-{{676039\,\cos ^{25}x-8817900\,\cos ^{23}x+53117350\,\cos ^{21}x- 195695500\,\cos ^{19}x+492116625\,\cos ^{17}x-892371480\,\cos ^{15}x +1201269300\,\cos ^{13}x-1216870200\,\cos ^{11}x+929553625\,\cos ^9x -531173500\,\cos ^7x+223092870\,\cos ^5x-67603900\,\cos ^3x+16900975 \,\cos x}\over{16900975}}$$
The graph
The answer [src]
                                                                  13             17            5            21         25            23             7             19             15   
4194304                   9           3            11      924*cos  (1)   495*cos  (1)   66*cos (1)   22*cos  (1)   cos  (1)   12*cos  (1)   220*cos (1)   220*cos  (1)   264*cos  (1)
-------- - cos(1) - 55*cos (1) + 4*cos (1) + 72*cos  (1) - ------------ - ------------ - ---------- - ----------- - -------- + ----------- + ----------- + ------------ + ------------
16900975                                                        13             17            5             7           25           23            7             19             5      
$${{4194304}\over{16900975}}-{{676039\,\cos ^{25}1-8817900\,\cos ^{23 }1+53117350\,\cos ^{21}1-195695500\,\cos ^{19}1+492116625\,\cos ^{17 }1-892371480\,\cos ^{15}1+1201269300\,\cos ^{13}1-1216870200\,\cos ^{11}1+929553625\,\cos ^91-531173500\,\cos ^71+223092870\,\cos ^51- 67603900\,\cos ^31+16900975\,\cos 1}\over{16900975}}$$
=
=
                                                                  13             17            5            21         25            23             7             19             15   
4194304                   9           3            11      924*cos  (1)   495*cos  (1)   66*cos (1)   22*cos  (1)   cos  (1)   12*cos  (1)   220*cos (1)   220*cos  (1)   264*cos  (1)
-------- - cos(1) - 55*cos (1) + 4*cos (1) + 72*cos  (1) - ------------ - ------------ - ---------- - ----------- - -------- + ----------- + ----------- + ------------ + ------------
16900975                                                        13             17            5             7           25           23            7             19             5      
$$- \frac{66 \cos^{5}{\left(1 \right)}}{5} - \cos{\left(1 \right)} - 55 \cos^{9}{\left(1 \right)} - \frac{924 \cos^{13}{\left(1 \right)}}{13} - \frac{495 \cos^{17}{\left(1 \right)}}{17} - \frac{22 \cos^{21}{\left(1 \right)}}{7} - \frac{\cos^{25}{\left(1 \right)}}{25} + \frac{12 \cos^{23}{\left(1 \right)}}{23} + \frac{220 \cos^{19}{\left(1 \right)}}{19} + \frac{264 \cos^{15}{\left(1 \right)}}{5} + 72 \cos^{11}{\left(1 \right)} + \frac{4194304}{16900975} + \frac{220 \cos^{7}{\left(1 \right)}}{7} + 4 \cos^{3}{\left(1 \right)}$$
Numerical answer [src]
0.000743706011186276
0.000743706011186276
The graph
Integral of sin^25x dx

    Use the examples entering the upper and lower limits of integration.