Mister Exam

Other calculators

Integral of sinsinx/(cos^2x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi               
  /               
 |                
 |  sin(sin(x))   
 |  ----------- dx
 |     2          
 |  cos (x) + 1   
 |                
/                 
pi                
--                
2                 
$$\int\limits_{\frac{\pi}{2}}^{\pi} \frac{\sin{\left(\sin{\left(x \right)} \right)}}{\cos^{2}{\left(x \right)} + 1}\, dx$$
Integral(sin(sin(x))/(cos(x)^2 + 1), (x, pi/2, pi))
The answer (Indefinite) [src]
  /                       /              
 |                       |               
 | sin(sin(x))           | sin(sin(x))   
 | ----------- dx = C +  | ----------- dx
 |    2                  |        2      
 | cos (x) + 1           | 1 + cos (x)   
 |                       |               
/                       /                
$$\int \frac{\sin{\left(\sin{\left(x \right)} \right)}}{\cos^{2}{\left(x \right)} + 1}\, dx = C + \int \frac{\sin{\left(\sin{\left(x \right)} \right)}}{\cos^{2}{\left(x \right)} + 1}\, dx$$
The answer [src]
 pi               
  /               
 |                
 |  sin(sin(x))   
 |  ----------- dx
 |         2      
 |  1 + cos (x)   
 |                
/                 
pi                
--                
2                 
$$\int\limits_{\frac{\pi}{2}}^{\pi} \frac{\sin{\left(\sin{\left(x \right)} \right)}}{\cos^{2}{\left(x \right)} + 1}\, dx$$
=
=
 pi               
  /               
 |                
 |  sin(sin(x))   
 |  ----------- dx
 |         2      
 |  1 + cos (x)   
 |                
/                 
pi                
--                
2                 
$$\int\limits_{\frac{\pi}{2}}^{\pi} \frac{\sin{\left(\sin{\left(x \right)} \right)}}{\cos^{2}{\left(x \right)} + 1}\, dx$$
Integral(sin(sin(x))/(1 + cos(x)^2), (x, pi/2, pi))
Numerical answer [src]
0.694141543496922
0.694141543496922

    Use the examples entering the upper and lower limits of integration.