Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x*cos(x/2) Integral of x*cos(x/2)
  • Integral of x/(2*x+1) Integral of x/(2*x+1)
  • Integral of (x+1)e^x Integral of (x+1)e^x
  • Integral of (x+1)e^-x Integral of (x+1)e^-x
  • Identical expressions

  • sin(one /x)*(dx/x^ two)
  • sinus of (1 divide by x) multiply by (dx divide by x squared )
  • sinus of (one divide by x) multiply by (dx divide by x to the power of two)
  • sin(1/x)*(dx/x2)
  • sin1/x*dx/x2
  • sin(1/x)*(dx/x²)
  • sin(1/x)*(dx/x to the power of 2)
  • sin(1/x)(dx/x^2)
  • sin(1/x)(dx/x2)
  • sin1/xdx/x2
  • sin1/xdx/x^2
  • sin(1 divide by x)*(dx divide by x^2)

Integral of sin(1/x)*(dx/x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     /1\   
 |  sin|-|   
 |     \x/   
 |  ------ dx
 |     2     
 |    x      
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\sin{\left(\frac{1}{x} \right)}}{x^{2}}\, dx$$
Integral(sin(1/x)/x^2, (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                      
 |                       
 |    /1\                
 | sin|-|                
 |    \x/             /1\
 | ------ dx = C + cos|-|
 |    2               \x/
 |   x                   
 |                       
/                        
$$\int \frac{\sin{\left(\frac{1}{x} \right)}}{x^{2}}\, dx = C + \cos{\left(\frac{1}{x} \right)}$$
The graph
The answer [src]
<-1 + cos(1), 1 + cos(1)>
$$\left\langle -1 + \cos{\left(1 \right)}, \cos{\left(1 \right)} + 1\right\rangle$$
=
=
<-1 + cos(1), 1 + cos(1)>
$$\left\langle -1 + \cos{\left(1 \right)}, \cos{\left(1 \right)} + 1\right\rangle$$
AccumBounds(-1 + cos(1), 1 + cos(1))
Numerical answer [src]
-1.74295524279167e+18
-1.74295524279167e+18

    Use the examples entering the upper and lower limits of integration.