Mister Exam

Other calculators

Integral of sin(ln^2(x))/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     /   2   \   
 |  sin\log (x)/   
 |  ------------ dx
 |       x         
 |                 
/                  
0                  
01sin(log(x)2)xdx\int\limits_{0}^{1} \frac{\sin{\left(\log{\left(x \right)}^{2} \right)}}{x}\, dx
Integral(sin(log(x)^2)/x, (x, 0, 1))
The answer (Indefinite) [src]
  /                        /               
 |                        |                
 |    /   2   \           |    /   2   \   
 | sin\log (x)/           | sin\log (x)/   
 | ------------ dx = C +  | ------------ dx
 |      x                 |      x         
 |                        |                
/                        /                 
sin(log(x)2)xdx=C+sin(log(x)2)xdx\int \frac{\sin{\left(\log{\left(x \right)}^{2} \right)}}{x}\, dx = C + \int \frac{\sin{\left(\log{\left(x \right)}^{2} \right)}}{x}\, dx
The answer [src]
  1                
  /                
 |                 
 |     /   2   \   
 |  sin\log (x)/   
 |  ------------ dx
 |       x         
 |                 
/                  
0                  
limx0π(2i+2)erf((2i+2)logx2)16+π(2i2)erf((2i2)logx2)16+π(22i)erf(ilogx)16+π(2i+2)erf((1)14logx)16-\lim_{x\downarrow 0}{{{\sqrt{\pi}\,\left(\sqrt{2}\,i+\sqrt{2} \right)\,\mathrm{erf}\left({{\left(\sqrt{2}\,i+\sqrt{2}\right)\, \log x}\over{2}}\right)}\over{16}}+{{\sqrt{\pi}\,\left(\sqrt{2}\,i- \sqrt{2}\right)\,\mathrm{erf}\left({{\left(\sqrt{2}\,i-\sqrt{2} \right)\,\log x}\over{2}}\right)}\over{16}}+{{\sqrt{\pi}\,\left( \sqrt{2}-\sqrt{2}\,i\right)\,\mathrm{erf}\left(\sqrt{-i}\,\log x \right)}\over{16}}+{{\sqrt{\pi}\,\left(\sqrt{2}\,i+\sqrt{2}\right)\, \mathrm{erf}\left(\left(-1\right)^{{{1}\over{4}}}\,\log x\right) }\over{16}}}
=
=
  1                
  /                
 |                 
 |     /   2   \   
 |  sin\log (x)/   
 |  ------------ dx
 |       x         
 |                 
/                  
0                  
01sin(log(x)2)xdx\int\limits_{0}^{1} \frac{\sin{\left(\log{\left(x \right)}^{2} \right)}}{x}\, dx
Numerical answer [src]
0.0235419702091351
0.0235419702091351

    Use the examples entering the upper and lower limits of integration.