Integral of sin(ln^2(x))/x dx
The solution
The answer (Indefinite)
[src]
/ /
| |
| / 2 \ | / 2 \
| sin\log (x)/ | sin\log (x)/
| ------------ dx = C + | ------------ dx
| x | x
| |
/ /
∫xsin(log(x)2)dx=C+∫xsin(log(x)2)dx
1
/
|
| / 2 \
| sin\log (x)/
| ------------ dx
| x
|
/
0
−x↓0lim16π(2i+2)erf(2(2i+2)logx)+16π(2i−2)erf(2(2i−2)logx)+16π(2−2i)erf(−ilogx)+16π(2i+2)erf((−1)41logx)
=
1
/
|
| / 2 \
| sin\log (x)/
| ------------ dx
| x
|
/
0
0∫1xsin(log(x)2)dx
Use the examples entering the upper and lower limits of integration.