1 / | | / 3*x\ | \sin(8*x) + E / dx | / 0
Integral(sin(8*x) + E^(3*x), (x, 0, 1))
Integrate term-by-term:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
The result is:
Add the constant of integration:
The answer is:
/ | 3*x | / 3*x\ cos(8*x) e | \sin(8*x) + E / dx = C - -------- + ---- | 8 3 /
3 5 cos(8) e - -- - ------ + -- 24 8 3
=
3 5 cos(8) e - -- - ------ + -- 24 8 3
-5/24 - cos(8)/8 + exp(3)/3
Use the examples entering the upper and lower limits of integration.