Mister Exam

Other calculators

Integral of sin(8*x)+e^(3*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  /            3*x\   
 |  \sin(8*x) + E   / dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(e^{3 x} + \sin{\left(8 x \right)}\right)\, dx$$
Integral(sin(8*x) + E^(3*x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      Now substitute back in:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                                        3*x
 | /            3*x\          cos(8*x)   e   
 | \sin(8*x) + E   / dx = C - -------- + ----
 |                               8        3  
/                                            
$$\int \left(e^{3 x} + \sin{\left(8 x \right)}\right)\, dx = C + \frac{e^{3 x}}{3} - \frac{\cos{\left(8 x \right)}}{8}$$
The graph
The answer [src]
                 3
  5    cos(8)   e 
- -- - ------ + --
  24     8      3 
$$- \frac{5}{24} - \frac{\cos{\left(8 \right)}}{8} + \frac{e^{3}}{3}$$
=
=
                 3
  5    cos(8)   e 
- -- - ------ + --
  24     8      3 
$$- \frac{5}{24} - \frac{\cos{\left(8 \right)}}{8} + \frac{e^{3}}{3}$$
-5/24 - cos(8)/8 + exp(3)/3
Numerical answer [src]
6.50503314528863
6.50503314528863

    Use the examples entering the upper and lower limits of integration.